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Abstract 
 
As quality of service (QoS) capabilities are added to the Internet, our nation's business and research 
infrastructure will increasingly depend on their fault tolerance and survivability.  Current frameworks and 
protocols (such as the Resource ReSerVation Protocol (RSVP), Integrated Services (IntServ), and 
Differentiated Services (DiffServ)) that provide quality of service to networks are vulnerable to attacks of 
abuse and denial of service.  Once QoS mechanisms are deployed, they will become tempting targets for 
malicious hackers or adversaries.  We believe it is wise to anticipate such attacks and develop effective 
and practical defenses prior to widespread deployment. 
 
In this project we investigated the vulnerabilities of current protocols to attacks on QoS, and we proposed 
methods of protecting against such attacks.  All methods were investigated in depth by simulation, 
implementation, or a combination of the two.   In this document, we summarize our findings and the 
results we produced.  The parts of this project are as follows: 

1. Protecting RSVP Against Insider Attacks, Using Selective Digital Signatures with Conflict 
Detection 

2. Preventing Denial of Service Attacks on QoS by Pricing of Network Resources 

3. Protection of Reliable Multicast Against Receiver-Based Attacks 

4. Capacity Planning for Networks Supporting DiffServ and MPLS 

5. Detection of Denial-of-QoS Attacks on DiffServ Networks 

6. Statistical Anomaly Detection for TCP Packet Dropping Attacks 

7. Automatic Generation Of IPSec/VPN Security Policies In An Intra-domain Environment  

8. Tracing Attack Traffic Through Stepping Stones Using Watermarking 
 

All outputs mentioned as part of this project are available on the ARQoS website 
(http://arqos.csc.ncsu.edu).  As part of this project, 9 students (4 PhD, 5 MS with thesis) were or will soon 
be graduated, 15 conference or workshop papers were presented and published, 2 journal papers were 
published or are currently in review, and 7 software packages were released. 
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Overview 
 
As quality of service (QoS) capabilities are added to the Internet, our nation's business and research 
infrastructure will increasingly depend on their fault tolerance and survivability.  Current frameworks and 
protocols, such as the Resource ReSerVation Protocol (RSVP) [RFC2205], Integrated Services (IntServ) 
[RFC1633], and Differentiated Services (DiffServ) [RFC2475] that provide quality of service to networks 
are vulnerable to attacks of abuse and denial of service.  Once QoS mechanisms are deployed, they will 
become tempting targets for malicious hackers or adversaries.  We believe it is wise to anticipate such 
attacks and develop effective and practical defenses prior to widespread deployment. 
 
TCP is the main transport protocol in the Internet for providing reliable delivery of packets.  UDP is the 
other important transport protocol; UDP does not guarantee reliable delivery, and is used for applications 
where occasional packet loss is tolerable.  In this document, a flow or connection refers to a TCP or UDP 
connection between two applications, over which many packets may be sent.  A flow is by definition bi-
directional, meaning packets may be sent in both directions. 
 
RSVP is a signaling protocol that was first proposed in the early 1990’s.  It allows a sending application to 
declare the characteristics of the traffic it will send out.  The receiving application computes the 
appropriate bandwidth for this traffic, and the QoS that it desires from the network.  RSVP allows the 
receiver to reserve this amount of bandwidth along the path between the sender and the receiver, for the 
duration of the flow.  RSVP is considered to be a very safe, predictable, and conservative means of 
providing QoS on a per-flow basis.  It is also considered to be somewhat heavy-weight, or expensive to 
implement and operate. 
 
DiffServ was proposed in the mid 1990’s, and attempts to provide QoS at lower cost than RSVP.  DiffServ 
provides relative or qualitative QoS rather than absolute guarantees of QoS.  It provides only a few 
choices of QoS classes, and it only controls QoS for large aggregations of flows, rather than for individual 
flows.  The basic classes, in order from highest to lowest quality, are EF (Expedited Forwarding), AF 
(Assured Forwarding), and BE (Best Effort).  A Service Level Agreement, or SLA, defines the QoS that is 
expected for user traffic. 
 
In this project we investigated the vulnerabilities of current protocols to attacks on QoS, and we proposed 
methods of protecting against such vulnerabilities.  All methods were investigated in depth by simulation, 
implementation, or a combination of the two.   In the following 8 chapters we summarize our findings and 
the results we produced.  The chapter contents are as follows: 

1. Protecting RSVP Against Insider Attacks, Using Selective Digital Signatures with Conflict      
Detection 

2. Preventing Denial of Service Attacks on QoS by Pricing of Network Resources 

3. Protection of Reliable Multicast Against Receiver-Based Attacks 

4. Capacity Planning for Networks Supporting DiffServ and MPLS 

5. Detection of Denial-of-QoS Attacks on DiffServ Networks 

6. Statistical Anomaly Detection for TCP Packet Dropping Attacks 

7. Automatic Generation Of IPSec/VPN Security Policies In An Intra-domain Environment  

8. Tracing Attack Traffic Through Stepping Stones Using Watermarking 

Note: all outputs mentioned as part of this project are available on the ARQoS website 
(http://arqos.csc.ncsu.edu). 
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Chapter 1 
Protecting the Resource Reservation Protocol Against Insider Attacks 
Using Selective Digital Signatures with Conflict Detection 
 

Summary 
RSVP is the IETF standard for reserving resources on a path, in order to ensure network QoS.  There has 
not been much attention paid to the security vulnerabilities of RSVP, which may allow denial of service 
attacks on QoS.  In this part of the project we analyzed the vulnerabilities of RSVP and showed they were 
not adequately addressed by existing proposals.  We then described a method of protection that 
addresses most of these vulnerabilities. 
 
Our method uses conventional digital signatures to protect the contents of RSVP messages.  However, 
unlike previous techniques, our method uses only end-to-end authentication, rather than hop-by-hop 
authentication, and is therefore cheaper to implement.  Since some of the fields in RSVP messages may 
legitimately be altered in transit, they cannot be digitally signed by the originator.  Rather, we detect 
conflicts in such mutable fields when intermediate routers alter them in undesirable (and illegal) ways.  
We show that this combination of end-to-end authentication and conflict detection protects against a 
much wider set of attacks than previous methods. 
 

Introduction 
Ensuring that the traffic generated by a user’s application receives the quality of service it requires from 
the network can only be accomplished if there are adequate network resources (bandwidth, buffer space, 
and queuing priority) available.  RSVP [RFC2205] is an IETF standard for reserving network resources for 
this purpose.  With RSVP, the originator of traffic creates a PATH message, which is transmitted to the 
receiver or receivers.  This PATH message specifies the characteristics of the traffic that the sender 
expects to generate; this specification is called the Tspec object.  The routers that route the PATH 
message to the receiver(s) must also inform the receiver of the maximum amount of resources available 
on the path from the sender to the receiver.  This information constitutes the Adspec object.  The 
receiver(s), upon receiving the PATH message, will determine how much resources the traffic should 
receive to ensure adequate QoS.  This information is added to the Flowspec object, and inserted into a 
second message type, the RESV message.  The RESV message is sent from the receiver(s) back to the 
sender along the reverse of the path taken by the PATH message.  The routers receiving the RESV 
message will record the amount of resources being reserved for this flow, and propagate the RESV 
message back towards the sender.  When the RESV message reaches the sender, resources have been 
reserved all along the path and transmission of user traffic with the desired QoS may begin. 
 
Periodically (every 30 seconds) this process is repeated to maintain the reservation state in each of the 
routers.  RESV messages from multiple receivers (of traffic from a single sender) are merged if their 
reservations share some part of the same path.  This occurs when the sender’s traffic is multicast to a set 
of receivers.  The merging requires that the maximum reservation request of the merged RESV 
messages is propagated towards the sender. A figure illustrating RSVP operation is shown below.   
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Figure 1.  RSVP Operation 

 
If during normal operation of RSVP a reservation should be terminated (it is no longer needed, or a router 
no longer has sufficient resources to maintain the reservation), path and reservation TEARDOWN 
messages will be generated.  Obviously, only routers participating in the reservation should initiate 
TEARDOWN messages. 
 
Attackers who wish to interfere with the QoS provided by the network may launch two types of attacks.  In 
the first type, the attacker attempts to disrupt the correct operation of RSVP.  In the second type of attack, 
the attacker attempts to interfere with the user traffic which is receiving the guaranteed QoS.  In this part 
of the project, we restricted our attention to the first type of attack, i.e., how to prevent attacks on the 
correct operation of RSVP (see chapter 6 for more about the second category of attack).  Attacks in this 
first category include: 

1. Intercepting and dropping (failing to propagate) PATH and/or RESV messages 
2. Illegal modification of traffic requirements (TSpec object), available resource information (Adspec 

object), or reservation requests (Flowspec object) 
3. Forging of TEARDOWN messages by non-participating routers. 
 

We assume in this work that the senders operate in a benign and proper way, and that they will not make 
false requests or declarations (see chapter 2 for more on this problem).  We are concerned with the 
possibility that routers or receivers may delete, illegally modify, or forge PATH and RESV messages 
between the sender and receiver(s).  To prevent message forgeries, we assume that PATH and RESV 
messages are digitally signed by the hosts that generate them.  To detect message deletion, we assume 
that failure to create a reservation is detected and the user or a system administrator will be notified, in 
which case failure diagnosis can be performed.  Therefore, we are concerned mainly with illegal 
modification of RESV messages, and illegal generation of TEARDOWN messages. 
 
The challenges in verifying correct RSVP operation and detecting malicious behavior are the following: 

• Message contents can be (legitimately) modified in transit.  The Adspec object can be updated by 
each router on the path.  Any router modifying the Flowspec may decrease the amount of 
available bandwidth, but never increase it.  The Flowspec objects from multiple receivers can be 
merged at the router where two RESV messages join together to follow the same path to the 
sender.  The larger of the two Flowspecs being merged should be forwarded, not the smaller. 
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• There is a logical relationship between the Tspec object, the Adspec object, and the Flowspec 
object.  The Adspec should not be larger than the Tspec object, and the Flowspec should be not 
larger than the Adspec object. 

 
Previous work on protecting RSVP has not adequately addressed these issues.  Baker et al. [BLT98] 
have proposed that hop-by-hop authentication be used to detect interference with or forgery of RSVP 
messages between RSVP-enabled routers.  Unfortunately, their approach does not protect against 
malicious behavior by such RSVP-enabled routers themselves.  We describe below a more robust 
method for protecting RSVP. 
 

Methods, Assumptions, Procedures 
Our approach only requires that the sender and receiver digitally sign information in the PATH and RESV 
messages.  Routers on the path between them may need to verify these signatures, but do not 
themselves have to sign any of the information in these messages.  Our modifications are described 
below: 

1. The sender digitally signs those parts of the PATH message which will not be changed in transit, 
and then sends the PATH message. 

2. An RSVP-enabled router on the path between the sender and receiver processes this PATH 
message, possibly modifies the Adspec object, and forwards it towards the receiver. 

3. The receiver, upon receiving this PATH message, verifies the integrity of the unmodified contents 
of the PATH message. 

4. The receiver generates a RESV message, based upon the received PATH message.  The 
receiver signs this message and separately signs the Flowspec object in this message.  In 
addition, the receiver signs the Adspec object which was received in the PATH message, and 
adds this (“piggybacks it”) to the RESV message. 

5. An RSVP-enabled router on the path between the receiver and sender processes this RESV 
message, and may merge multiple RESV messages from multiple receivers.  It also verifies that 
the signed Adspec object in the RESV message is no larger than the value it generated and 
forwarded itself in the preceding PATH message.  If it is larger, then some router or the receiver 
illegally modified the Adspec object. 

6. When the RESV message arrives at the sender, the integrity of the contents is verified. 
7. The Flowspec object received in this RESV message is signed by the sender, and included in the 

next PATH message generated by this sender (i.e., in the next 30 seconds).  
8. An RSVP-enabled router receiving this new PATH message compares the signed Flowspec 

object with the Flowspec object it forwarded to the sender.  If the signed object is smaller than the 
stored one, the Flowspec object was illegally merged (the smaller of two Flowspecs was chosen, 
rather than the larger). 

 
Forgery of PATH, RESV, or TEARDOWN messages by routers not part of the path between the sender 
and the receiver may be detected by requiring all messages to be signed by the originator. 
 

Results and Discussion 
A considerably larger number of attacks on RSVP can be detected by this method vs. the method of 
Baker et al.  Specifically, illegal modifications by RSVP-enabled routers on the path from the sender to 
the receiver, or by the receiver, will be detected.  Part of the contribution of this work has been the 
identification of these additional vulnerabilities that were not previously addressed. 
 
In addition, our method has lower overhead, since signing of message contents is only performed by the 
end points, not by each hop (RSVP-enabled router on the path).  End-to-end delay and throughput of 
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RSVP should be improved with this approach, while at the same time security and robustness have been 
improved. 
 
Some outcomes of this work are the following: 

• This work was presented at the International Workshop on QoS (IWQOS) in 1999, and published 
as: T-L Wu, S. F. Wu, Z. Fu, H. Huang, and F. Gong, “Securing QoS: Threats to RSVP Messages 
and Their Countermeasures”, Proc of the Intl. Workshop on QoS (IWQOS ’99), 1999. 

 
This work was part of the PhD theses of Tsung-Li Wu and Zhi Fu.  Dr. Wu is now a faculty member at 
National Tsing Hua University in Taiwan.  Dr. Fu is a researcher at Motorola Labs in Chicago. 

 

Conclusions, Recommendations 
As protocols for providing QoS become more widespread, it can be expected they will become the target 
of attacks.  RSVP is an example of a signaling protocol that seems difficult to adequately protect, 
because the message contents are modified along the path to the destination.  Conventional 
authentication signs message contents when they are generated and verifies integrity when they are 
received.  This approach cannot be used when message contents can be (legitimately) changed in 
transit.  The approach we advocate instead is (a) recording the value transmitted (b) signing the value 
received (c) reflecting this received value back to the senders, and (d) comparing the received value with 
the transmitted value to detect invalid modifications.  This may be thought of as a blending of intrusion 
detection and conventional authentication.   We advocate the standardization and adoption of this 
approach to protect RSVP from potential attacks by both “outsiders” (non-trusted routers) and “insiders” 
(trusted routers + senders and receivers). 
 

References 
[RFC2205] R. Braden et al., “Resource ReSerVation Protocol (RSVP) -- Version 1 Functional 
Specification”, IETF RFC2205, September 1997. 
 
[BLT98] F. Baker, B. Lindall, and M. Talwar. RSVP Cryptographic Authentication. Internet Draft, IETF, 
November 1998. Network Working Group. 
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Chapter 2 
Preventing Denial of Service Attacks on QoS by Pricing of Network 
Resources 
 

Summary 
In this part of the project, we investigated how to use resource pricing to discourage or prevent attacks on 
QoS.  The benefits of pricing are flexibility, provable fairness, ease of understanding and implementation, 
and efficient use of resources.  Pricing may also be thought of as a way to discourage wasteful or 
malicious use of network resources. 
 
We demonstrated how to use pricing for congestion control in TCP/IP and ATM networks.  We showed 
the method can accommodate users with different preferences for stability or maximum quality.  We have 
extended our method to achieve optimum provisioning of resources in DiffServ networks, to meet user 
needs. 
 
The impact on IETF protocols for call signaling, resource reservation, and resource allocation have been 
considered, and extensions to one protocol have been proposed.  This method has been implemented 
and tested in an actual network, and source code is available. 

Introduction 
QoS is provided to applications by making sure they have sufficient resources.  The term “resources” 
refers to many things, including processing time, network bandwidth, memory, storage space, scheduling 
priority, etc.  In our work on QoS, the resource we particularly focus on is network or link bandwidth.  The 
lessons learned apply equally well to other resources. 
 
Control of resources is necessary when there aren’t enough to satisfy all requests. The reasons for this 
might include: 

• many applications are trying to run simultaneously (demand is high) 
• the resources are in short supply (e.g.., in combat, wireless bandwidth is limited by battery power 

and frequency assignment) 
• applications scale up to use whatever resources are available (e.g., a file transfer application 

increases its speed to whatever rate the network will support, up to a maximum speed the file can 
be transferred to or from the hard drive) 

• malicious users deliberately (and spuriously) claim and use resources, just to make them 
unavailable to other users 

Without some sort of control or voluntary cooperation, allocation of resources (and QoS) becomes chaotic 
or highly unfair.  In an environment where attacks may occur, voluntary cooperation cannot be relied 
upon, and a separate control mechanism is needed. 
 
We believe virtual pricing of resources is an appropriate mechanism for this purpose.  By “virtual” we 
mean that no actual currency has to be used, or exchange hands; any kind of tokens whose supply is 
controlled may be used.  Pricing of a limited resource is easily understood by users, and the principle of 
price changes in response to changes in the supply and demand of a commodity are well understood also 
[MMV95].  It has been shown that pricing leads to efficient use of resources.  We discuss below the 
different ways in which pricing is flexible and may support a variety of policies.  The method of pricing and 
bidding for resources is fully distributed and can easily scale to Internet-sized systems.  Finally, pricing 
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limits the ability of attackers to acquire and squander scarce resources, and discourages them from 
attempting to do so. 
 
Our method is intended to operate at multiple granularities.  At the small end of the scale, it provides a 
means of allocating a small amount of bandwidth to an application over the span of a few minutes.  At the 
large end of the scale, we discuss how ISPs might use pricing to provision large amounts of bandwidth 
over weeks or even months. 
 

Methods, Assumptions, Procedures 
Allocation of bandwidth for users is done in one of two ways by current Internet protocols.  One, the 
“implicit” approach, is the basis of TCP congestion control.  Flows experiencing packet losses are 
expected to quickly cut back their rate of transmission, followed by slowly increasing their bandwidth until 
the next congestion point is reached.  There is no fixed allocation of bandwidth, so this method is 
appropriate only for “elastic” applications (those which can tolerate variable bandwidths, such as file 
transfers).  This approach relies on voluntary compliance by the users and enforces a single form of 
fairness, which is essentially “everybody suffers equally”.   The second, the “explicit” approach, requires 
users to state their bandwidth needs and then reserves that amount of bandwidth using the RSVP 
protocol.  In this method, bandwidth allocation is assumed to be done in a first-come, first-served fashion, 
and no explicit factors governing fairness are defined. 
 
The essence of QoS is the ability to allocate resources unevenly (more to those that require it, less to 
those that don’t) based on varying needs of applications, and to enforce that allocation; neither approach 
above has both of these features.  Pricing is a mechanism that has the ability to do so.  When an 
application competes for resources, it must bid for them based on the preferences, demands, and budget 
of the user running the application.  As the demand for bandwidth goes up, or the supply goes down, 
prices rise and are communicated back to the users.  The key aspects of this process are measuring 
demand, computing prices to achieve close to (but not greater than) 100% utilization of the resources, 
and distributing prices back to the users.  We have shown how to use the protocols of ATM networks, and 
IP networks, to accomplish these steps.  The granularity of bandwidth allocation in this part of the work 
has been at the level of individual flows or connections, for short timescales (seconds). 
 
We have shown that our method is very practical to implement.  Computation of the appropriate price is 
accomplished by a well-known method referred to as a tatonnement process, which guarantees 
convergence and optimality under reasonable conditions.  The result is efficient management of the 
resources, and support for a wide range of allocation policies (types of fairness), including max-min, 
proportional-fair, and utility-fair, and weighted versions of each.  It thus has the above-stated desired 
capabilities (uneven, enforceable allocation based on needs).  In the figures below, we show the results 
of experiments intended to demonstrate fairness and full utilization of bandwidth. 
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Figure 2. Results of Pricing Experiments showing full utilization and high fairness. 

 
This first step of our approach, however, did not provide guaranteed QoS throughout the duration of an 
application.  In order to accomplish such guarantees, it must be possible to reserve resources at a fixed 
price.  Since this may be regarded as a hedge against future increases in demand (and therefore price), 
such reservations come at a cost.  We have formulated a “multi-market” model in which a mix of users 
can interact to obtain QoS under varying conditions.  This model accommodates both (i) users who prefer 
the highest possible QoS, at the risk of some variation in resource price and availability, along with (ii) 
users who will settle for a lower QoS, but who want a guarantee of price stability for a fixed duration. 
 
We further considered the issue of resource allocation for larger-scale aggregations of users, over long 
timescales.  This is the problem of provisioning sufficient capacity for the expected demands on the 
network, considering not just the number of users, but the QoS requirements of those users.  We 
assumed that Differentiated Services (DiffServ) was used to provide long-term, large-scale QoS 
guarantees, and that ISPs would be responsible for predicting demand, provisioning it (i.e., buying 
sufficient capacity from a carrier), and then allocating it to individual users at prices determined by our 
earlier method.  We showed how to formulate a hierarchical market model that results in maximum utility 
for users and maximum profits for the ISP.  We then extended these results in two ways.  First, we 
showed that allowing users with lower QoS requirements to “promote” to a higher QoS class when 
resources are available is a desirable strategy.  Secondly, we showed that it is not necessary to adjust 
prices for users frequently in order to optimize utility.  In fact, if price changes are scheduled only 2 or 3 
times a day, the loss in aggregate utility (and profit) is generally under 10% under reasonable conditions. 
 
Lastly, we investigated the impact on IP protocols to implement pricing of user bandwidth requests.  Both 
SIP and RSVP are extensible protocols and already have provisions for Authorization Objects that can 
easily be adapted for our purpose.  The primary impact is on the COPS protocol, which has to be 
modified to support proper interaction between the connection request and resource allocation protocols.  
A figure of the protocols and their use is shown below. 
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Figure 3.  Impact of Pricing on RSVP, COPS, and SIP. 

 

Results and Discussion 
 
 
There have been many outputs of this part of the project.  The following presentations have been given, 
and papers published: 

• E. Fulp and D. Reeves, “Distributed Network Flow Control Based on Dynamic Competitive 
Markets”, presented at and published in the Proceedings of the International Conf. on Network 
Protocols (ICNP) in October 1998. 

• E. Fulp, D. Reeves, M. Ott, and D. Reininger, “ABR Rate Control for Multimedia Traffic Using 
Microeconomics”, presented at and published in the Proceedings of the International Conf. on 
ATM (ICATM) in July 1999. 

• D. Reeves, presentation on “Which Goals and What Criteria for Pricing?” at the Workshop on 
Pricing and QoS, ENTS, Paris, in September 1999. 

• E. Fulp, invited presentation on “The Cost of QoS: Network Pricing Techniques and Trends” at 
the NEC Computer and Communications Research Labs, Princeton, NJ in November 1999. 

• E. Fulp and D. Reeves, “QoS Rewards and Risks: A Multi-Market Approach to Resource 
Allocation”, presented at and published in the Proceedings of Networking 2000, Paris, France, 
May 2000. 

• E. Fulp, Z. Fu, D. Reeves, and S. F. Wu, “Preventing Denial of Service Attacks on Network 
Quality of Service”, presented at and published in the Proceedings of the Defense Information 
Security Conference and Expo (DISCEX-II), Anaheim, CA, June 2000. 

• E. Fulp and D. Reeves, “Optimal Provisioning and Pricing of Internet Differentiated Services in 
Hierarchical Markets”, presented at and published in the Proceedings of the International 
Conference on Networks (ICN), Colmar France, in July 2001. 
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• E. Fulp and D. Reeves, “Optimal Provisioning and Pricing of Differentiated Services Using QoS 
Class Promotion”, presented at and published in the Proceedings of the Workshop on Internet 
Charging and QoS Technology (ICQT), Vienna, Austria, October 2001. 

• E. Fulp and D. Reeves, “The Economic Impact of Network Pricing Intervals”, presented at and 
published in the Proceedings of the Workshop on Internet Charging and QoS Technology (ICQT), 
Zurich, Switzerland, October 2002. 

• E. Fulp and D. Reeves, “Bandwidth Provisioning and Pricing for Networks with Multiple Classes 
of Service”, submitted for publication to the Computer Networks Journal, Elsevier Science Publ.  
In review. 

 
We also integrated our method of pricing in the context of connection establishment with standard 
Internet protocols (SIP, RSVP, COPS).  The outputs are: 

• A software release containing modifications of SIP, RSVP, and COPS.  This software runs under 
Linux; both source code and executables are available. 

• Louis-Nicolas Hamer of Nortel Networks used some of our ideas about integration of call 
signaling and resource reservation in his IETF drafts draft-hamer-sip-session-auth-00.txt, draft-
hamer-rap-cops-umts-go-00.txt and draft-hamer-rap-session-auth-00.txt. 

 
In September of 1999 Errin Fulp graduated with a PhD in Electrical and Computer Engineering from NC 
State University.  His thesis title was Resource Allocation and Pricing for QoS Management in Computer 
Networks.  He is presently employed as an Assistant Professor of Computer Science at Wake Forest 
University.  Khurram Khan described the modifications to COPS for support of pricing in his MS thesis 
COPS Usage for Media Authorization, for which he received the MS in Computer Science from NC State 
in November, 2002.  He is currently employed by Spirent Networks. 
 

Conclusions, Recommendations 
We believe pricing is an appropriate method of allocating resources and discouraging or preventing 
attacks on QoS.  Our work has shown analytically and experimentally that this is so.  We have also 
addressed the issues of protocol implementation and signaling in support of our pricing methods.  We 
have not, however, investigated methods of billing and accounting in support of pricing, which are topics 
that await solutions and standardization by IETF. 
 

References 
 [MMV95] J. K. MacKie-Mason and H. R. Varian. “Pricing congestible network resources”. IEEE Journal 
on Selected Areas in Communications, 13(7):1141 -- 1149, Sept 1995. 
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Chapter 3 
Protection of Reliable Multicast Against Receiver-Based Attacks 
 
 

Summary 
Reliable multicasting is used to send a stream of data to a set of receivers efficiently, at the same time, 
and at the same rate.  With reliable multicasting, it is possible for a malicious receiver to intentionally slow 
down or even effectively halt transmissions to all receivers in the multicast group. 
 
In this part of the ARQoS project, we investigated the problem experimentally and showed that this 
vulnerability is severe and easy to exploit.  We proposed a theoretical solution to the problem by using 
auctions (specifically, the Generalized Vickrey Auction) to discourage malicious behavior by receivers.  
We then investigated the practical issues of supporting such an auction-based solution in a standard 
reliable multicast protocol, PGM.  We modified PGM and simulated its behavior with these modifications. 
 

Introduction 
Multicasting is used to deliver data to a set of receivers connected to the Internet in a way that is more 
efficient than sending the data separately to each receiver.  Reliable multicasting [LG98] is required when 
all receivers must receive exactly the same data, as is the case for many types of critical data.  Examples 
of military applications that would benefit from reliable multicast are distributed real-time simulations (or 
wargaming), and hierarchical control systems. 
 
The figure below shows an example of a multicasting tree with one sender and 4 receivers.  Those 
routers (green circles) which receive one copy of the data and forward multiple copies to the next level of 
the tree are called multicast routers. 
 

                                                    
 

Figure 4.  A Multicast tree. 
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If all receivers get the same data, and the data is sent once by the source, and the multicast routers can 
buffer only small amounts of data, reliable multicasting can only be accomplished if the receivers receive 
the data at roughly the same rate.  If the rate of transmission is determined by feedback from the receiver, 
as with TCP, this means that reliable multicast runs at the speed of the slowest receiver.  Unfortunately, 
this creates the opportunity for malicious users to slow down or even halt reliable multicast transmissions 
for all receivers in a group.  The malicious user need simply lie when reporting it can’t keep up with a 
higher transmission rate. 
 
To investigate the severity of this problem, we simulated reliable multicasting for a specific, standard 
protocol, PGM (Pragmatic Generic Multicast) [RFC3208].  In PGM, receivers send NAKs (negative 
acknowledgments) to the sender when they notice they missed some packets.  Any multicast router 
receiving a NAK can send the missing data if it has it; in the worst case, a NAK propagates back to the 
source, which is responsible for resending the missing data.  There are two approaches to flow control in 
PGM, one of which is paced by the NAKs received from the receivers.  We simulated the behavior of 
PGM for different NAK generation rates by the receivers, for a small multicast tree with 15 receivers.  The 
results are shown in the figure below, and demonstrate the sensitivity of reliable multicast to the rate at 
which receivers generate NAKs.  A multicast tree with hundreds or thousands of receivers would exhibit 
much worse behavior than this example, which illustrates the vulnerability of reliable multicast service. 
 

 
 

Figure 5. Effect on transmission time of receiver packet loss rates. 

 

Methods, Assumptions, Procedures 
As in our pricing work, our strategy is to discourage attacks on reliable multicast, by giving users 
(receivers) incentives to state truthfully what their receive capabilities are.  Such incentives don’t 



 

 

 

14

absolutely prevent falsifying feedback (NAKs) to the sender, but make it difficult or expensive for the 
attacker to do so.  We assume that the receivers have to state their preferences for transmission rates, 
and submit bids with those preferences.  These preferences and bids are collected by the sender, and a 
Generalized Vickrey Auction (GVA) [VMM95] computation is then performed to determine the optimum 
transmission rate.  GVA maximizes the aggregate utility of all receivers, is straightforward to compute, 
and is incentive-compatible, which means that the optimum strategy for all receivers (including malicious 
receivers) is to state truthfully what their preferences are.  In essence, a receiver desiring a lower 
transmission rate must compensate for the loss in value to other receivers who prefer a higher 
transmission rate. 
 
This result is an elegant solution to the problem of attacks on reliable multicast, but a major challenge 
remains: tailoring it to work well with an existing reliable multicast protocol.  We modified two of the 
existing PGM messages to include bid information from the receivers to the sender, and the resulting rate 
/ price information from the sender back to the receivers.   We also implemented the auction computation 
at the sender, and policing of the receivers to verify that they conformed to the expected receive rate.  We 
simulated this method and showed that the attack on reliable multicast is defeated by our modifications; 
users who request excessive retransmissions (i.e., who claim not to receive packets at the negotiated 
rate) will not cause a slowdown in this negotiated rate. 
 

Results and Discussion 
We believe that work on reliable multicast has failed to address this issue of receivers who deliberately 
slow down the transmission rate in order to impact other receivers.  We have presented an elegant 
solution based on auction theory, and we have shown how that solution can be integrated with an existing 
reliable multicast protocol.  Our contributions are: 

• Identifying the likelihood and impact of the attack 
• Presenting a theoretical solution 
• Showing a practical implementation of that solution 
• Demonstrating the effectiveness of the implementation 

 
Two faculty (Douglas Reeves, Peter Wurman) were involved in this work.  Some outputs of the work are: 

• A paper was presented at the International Workshop on Internet Charging and QoS 
Technologies in Zurich, Switzerland in October 2002, and published as A. Sureka and P. 
Wurman, “Applying Generalized Vickrey Auction (GVA) for Pricing Reliable Multicasts”, in Proc. 
Of the 2nd International Workshop on Internet Charging and QoS Technologies (ICQT 2002), 
October 2002, pp. 282—292. 

• The experiments on PGM, and modifications to PGM, were done as part of the ns-2 network 
simulator.  The code is on our website. 

 
Two students received their MS degrees in Computer Science.  Ashish Sureka graduated in MS in 
Computer Science from NC State in May 2002, and is continuing on for the Ph.D. under Dr. Wurman’s 
direction.  Nipul Shah defended his thesis entitled Preventing Denial of Service Attacks on Reliable 
Multicast Networks in the Department of Electrical and Computer Engineering at NC State, and is 
currently employed by Spirent Networks in the development and testing of advanced networking 
products. 
 

Conclusions and Recommendations 
Reliable multicast has been proposed in a number of papers, and has been standardized as multiple 
protocols. To date, adoption of both unreliable and reliable multicast has been slow.  It has been 
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suggested that reliable multicast should be performed at the application layer.  In this model, the function 
of the multicast routers is performed by application gateways instead, and there is no need to deploy 
multicast support in the network.  However, even if application gateways are used for reliable 
multicasting, there is still a high probability that malicious users will attempt to disrupt or degrade 
transmission speed by lying about the rate at which they can receive data.  Our insights and methods will 
be just as important in this case, and even more feasible to implement, since providing the proposed 
functionality at the application layer imposes fewer constraints on backwards compatibility. 
 
If existing reliable multicast protocol standards are to be robust and resistant to attack, they will need to 
be modified.  We present our approach as a specification of how this can be done. 
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 Chapter 4 
Capacity Planning for Networks Supporting DiffServ and MPLS 
 
 

Summary 
Differentiated Services (DiffServ) and Multiprotocol Label Switching (MPLS) are two popular protocols for 
implementing QoS in the Internet.  Both depend on careful design of the network to provide adequate 
capacity for expected user traffic demands.  Existing methods of network design, or capacity planning, do 
not consider quality-of-service constraints for multiple classes of service.  We have proposed a method of 
capacity planning that extends existing optimization methods to the case of multiple class of service traffic 
demands.  The method is designed specifically for DiffServ and MPLS-enabled networks.  Our evaluation 
has shown the practicality and usefulness of this technique.   Recent work has demonstrated how the 
method can be modified to ensure sufficient capacity is also available to tolerate network failures while 
providing QoS. 

Introduction 
There have been many proposals for adding quality of service (QoS) guarantees to the Internet, but most 
have met with resistance.  The two most popular proposals at present are to provide only a few classes of 
service (via Differentiated Services, or DiffServ) and to allow more fine-grained control of routing and 
capacity allocation (via Multiprotocol Label Switching, or MPLS [RFC3031].  In order to result in proper 
control of QoS, both require careful attention to designing the network to have sufficient capacity for the 
predicted usage.  This is because DiffServ only provides relative and not absolute QoS, and does not 
implement per-flow admission control.  Without proper network design, the amount of traffic entering the 
network may overwhelm the capability of providing differentiated services. 
 
The methods for doing so are referred to as “capacity planning”, for which well-established methods of 
optimization exist.  The three aspects of capacity planning are: 

• Topology design – determining location of routers and what routers are connected by direct links 
• Link sizing – determining how much bandwidth is needed for each link in the network 
• Routing – determining what path traffic takes through the network to reach its destination 

In most cases, topology design is determined by business factors, and the resulting topology is input to 
an optimization method that solves the link sizing and routing problems.  Such methods to date have 
treated all traffic as having the same end-to-end delay and loss requirements, which is not appropriate if 
some applications require better QoS than others. 
 

Methods, Assumptions, Procedures 
In our initial work, we formulated a new version of the capacity planning problem for networks using 
Differentiated Services.  We assumed that some fraction of the traffic was in the highest quality (EF) 
class, and the remaining traffic was in the conventional (BE) class.  In our model, EF traffic must receive 
the highest priority service, but without penalizing the performance of BE traffic beyond acceptable limits 
specified by the user.  This results in a new constraint on the optimization process. 
 
The resulting problem may be formulated as a non-linear integer programming optimization problem, 
which is normally very expensive to solve for large problem sizes (keep in mind that capacity planning 
may need to be done for networks with hundreds to thousands of routers and links).  The non-linear 
aspect is due to the QoS constraints, while the integer programming aspect is due to the restricted set of 
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choices of link sizes.  One of our major innovations in this work was suggesting how the problem could be 
decomposed, or separated, into smaller problems that could be solved individually, and whose solutions 
could be combined to provide a global solution.  The resulting blend of Lagrangean optimization with 
gradient descent and use of the subgradient method is a sophisticated and elegant solution method. 
 
Our initial work did not depend on or exploit the capabilities of MPLS, which allows classifying traffic and 
assigning it to specific paths through the network.  It is widely expected that network administrators will 
make use of MPLS to more carefully control and engineer their networks.  In the second step of our work, 
we added to the initial problem formulation the additional capabilities of MPLS.  This significantly 
complicated the problem, but we have shown that our solution technique can be modified to incorporate 
this capability.  The resulting work has just been presented at the International Teletraffic Congress, one 
of the premier conferences on capacity planning and performance analysis for QoS. 
 
Most recently, we have looked at the issue of supporting QoS in capacity planning, while at the same time 
providing adequate spare capacity to tolerate failures in the network.  Such failures occur in normal 
operation, and must be planned for.  They also may occur due to abnormal causes (e.g., the September 
11 attack took out a major chunk of Internet capacity in the northeastern US), and may be expected in 
networks operating under military control during times of conflict.  We are working on adding to our 
optimization method the requirements to maintain connectivity, and QoS, despite a limited set of network 
failures.  Our recent results are promising, and almost ready for submission. 
 

Results and Discussion 
We applied our method to the problem of optimizing link capacity and routing traffic in such a way that 
QoS constraints of EF and BE traffic are both met.  The experimental inputs were a variety of 
representative network topologies, with as many as 1000 nodes and 2500 links, and user traffic demands, 
up to 40,000 in number.  The solution quality was within a few percent of the optimal solution, which is 
outstanding.  The running times are shown below, which demonstrate our method is practical to use for 
large networks. It is the first successful approach to capacity-planning for networks supporting traffic with 
multiple QoS requirements. 
 

 
 

Figure 6. Running time of the DiffServ capacity planning heuristic. 
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As mentioned, similarly positive results have been reported for the case of networks supporting both 
MPLS and DiffServ, and we are currently collecting results on networks able to continue providing QoS 
despite failure of some links and/or routers. 
 
The outputs of this work are the following: 

• A presentation at the International Conference on Communications (ICC) in Anchorage, AK in 
April 2003, published as: K. Wu and D. S. Reeves, “Capacity Planning of DiffServ Networks with 
Best-effort and Expedited Forwarding Traffic”, in Proc. Of the International Conference on 
Communications, May 2003. 

• A presentation at the International Teletraffic Conference (ITC-18) in Berlin, Germany, published 
as: K. Wu and D. S. Reeves, “Link Dimensioning and LSP Optimization for MPLS Networks 
Supporting DiffServ”, in Proc. Of ITC-18 (International Teletraffic Conference), September 2003. 

• K. Wu and D. S. Reeves, “Capacity Planning of DiffServ Networks with Best-Effort and Expedited 
Forwarding Traffic”, to be published in Telecommunication Systems, January 2004. 

 
Kehang Wu will graduate with a PhD in Computer Engineering from NC State University in December 
2003.  The subject of his thesis is the work described in this chapter.  His plans after graduation have not 
been settled at this time. 
 
This work has benefited from collaboration with Dr. Cole Smith of the University of Arizona, another 
DARPA FTN PI, and by Dr. Michal Pioro of the Warsaw (Poland) University of Technology. 
 

Conclusions and Recommendations 
Methods of optimization for capacity planning have been well developed and widely applied for networks 
supporting just one class of traffic (like voice traffic, or data (best effort) traffic).  We have shown how to 
improve them for capacity planning of networks supporting multiple classes of traffic, under multiple 
constraints (use of MPLS, adequate spare capacity).  The results should be useful for providing QoS at 
low cost, while requiring only modest new capabilities from the network. 
 

References 
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Chapter 5 
Detection of Denial-of-QoS Attacks on DiffServ Networks 
 

Summary 
In this part of the ARQoS project, we proposed a method of detecting attacks on Quality of Service in 
DiffServ networks.  Our approach aims to achieve real time operation, fast detection, and scalability to 
large networks. Sensors sample QoS metrics like bit rate, packet dropping rate, and jitter of Virtual 
Leased Line (VLL) flows at strategic points in their paths. We detect anomalies in sampled network flow 
statistics using the EWMA Control Chart test for metrics that are highly stationary, and for the rest we use 
a method based on SRI's χ2 test (NIDES). We also use rule-based intrusion detection of SLAs as a 
complement to these techniques. 
 
We have tested our intrusion detection methods using emulation on a testbed, and using simulation.  
Attacks are detected 100% of the time, and require from under a minute to approximately 15 minutes to 
detect.  The false alarm rate at the sensitivity level used to achieve these results was less than 1%.   
 

Introduction 
Differentiated Services, or DiffServ, is a proposed standard for providing QoS in a lightweight way, to 
aggregations of flows.  The benefit of DiffServ is that it provides generally “good enough” QoS, at 
substantially less cost and complexity that Integrated or Guaranteed Services. On the other hand, 
because DiffServ does not control QoS as tightly as IntServ, it is more difficult to determine if the network 
is providing the desired QoS. 
 
Routers at the boundary, or exterior access point, of a large network will classify, mark, and police 
incoming DiffServ traffic.  Routers in the interior of the network are responsible for providing the 
requested QoS.  Two customers may be connected by a Virtual Leased Line (VLL) through a DiffServ 
network.  The VLL pins down the route taken through the network, helping to ensure that quality will not 
vary during the lifetime of a connection. 
 
Following are some of the DiffServ-specific attacks which we wish to detect and defend against: 

• A malicious external host can attempt to flood a boundary router, in effect denying service to 
other users of the DiffServ network. 

• A compromised DiffServ interior (core) router may remark, drop, or delay packets in violation of 
their QoS contract. 

• A compromised interior router may also flood the DiffServ network with bogus traffic. 
The challenge in this part of the project is to distinguish the normal, small variability in QoS (delay and 
loss rates) from the perturbations caused by deliberate manipulation of and interference with the functions 
of DiffServ routers. 
 

Methods, Assumptions, Procedures 
Detecting attacks on QoS requires measurement of QoS.  We have implemented the following "sensor" 
programs for this purpose.  First, sensors record the packet and bit rates of aggregated traffic and 
individual VLLS every 10 seconds, at each router.  Secondly, to have a "controlled" source to monitor, we 
inject probe traffic at a specific, low rate into an existing VLL.  The probe packets are cryptographically 
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signed to be recognizable and unforgeable.  Sensors then monitor the packet rate and delay variation 
(jitter) of this probe traffic.  A system diagram is shown below. 
 

 
Figure 7.  Placement of sensors and probes for DIffServ Intrusion Detection 

 
Statistical anomaly detection is based on the hypothesis that a system will behave anomalously when 
attacked and that these anomalies can be detected [D87].  A flow that has contracted for a specific QoS 
is a good candidate for the use of anomaly detection methods.  The anomaly detection approach is 
preferred for detection of new or uninvestigated attacks with undefined attack signatures -- as is the case 
with attacks on DiffServ. 
 
The statistical anomaly detection algorithm we use is based on SRI's NIDES algorithm [JV93], which tries 
to fit QoS measurements to an expected distribution using the χ2 test.  The behavior of DiffServ flows not 
under attack are measured over extended periods of time to capture the normal (non-attack) variation in 
the DiffServ network.  The distribution is discretized into "bins", each representing a range of values for 
delay, delay variation, packet loss rate, throughput, etc.  After every preset long term update period, 
QoSSTAT updates the long term distribution using exponentially weighted moving averages.  The short 
term profile is updated every time QoSSTAT receives a new report of a measured value.  In our tests we 
use a short term estimation period of 15 minutes (900 seconds), with one new measurement every 10 
seconds.  
 
Our method maintains a long term χ2 distribution curve, against which each new short term χ2 value is 
compared to calculate the anomaly score S.  A user-specified threshold indicates what probability level 
will be classified as "anomalous".  A higher threshold will favor quick and thorough detection of attacks, 
but will also mean an increase in the number of false alarms (false positives).  In our experiments, we 
specified two thresholds:  

• Anything with probability below .1% was interpreted as a definite attack 
• Anything with probability between .1% and 1% was interpreted as a possible attack. 

 
Certain parameters such as the drop rate associated with an EF probe flow in an uncongested network 
may be highly stationary.  The χ2  test in general will not work well for such parameters.  For detecting 
anomalies in highly stationary performance measures, we propose the use of an alternative method 
based on Control Charts [R59].  In statistical process control, the EWMA control chart is used to detect 
small shifts in the mean of a process to indicate an out-of-control condition. In contrast, we monitor flow 
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processes that are only weakly stationary, and hence have to allow for a gradual shift in their means over 
sufficiently long periods of time. However, a swift shift will be detected as an anomaly and flagged.  The 
long-term average is computed using an exponentially-weighted moving average, and compared with a 
short term estimate.  If the short-term estimate is more than 3 standard deviations away from the long-
term average, it is regarded as evidence of an attack. 
 
The statistical anomaly detection approach has been criticized for having a higher false alarm (false 
positive) rate than the rule or signature-based detection approaches.  In view of this, we also use a simple 
rule-based detection technique, henceforth referred to as RULE.  It is designed to quickly detect obvious 
violations of the SLA, based on DiffServ specifications [RFC2475].  The attack signatures we use include 
the packet dropping rate exceeding a specified rate for the Assured Forwarding (AF) probing traffic, EF 
packets being remarked instead of dropped when they are delayed, etc. 
 
We thus have 3 methods of detecting attack on QoS in DiffServ networks: the χ2  test, EWMA, and RULE. 
 

Results and Discussion 
We ran experiments to investigate the effectiveness of our intrusion detection method at detecting 
attacks.  These experiments were done in two ways.  In the “emulation'' tests, we used PCs running Linux 
as hosts and routers in a dedicated (and small) testbed.  In the “simulation'' tests, we used the simulator 
ns-2 to take additional measurements and investigate more complex traffic models.   
 
We created a variety of types of attacks to test our intrusion detection methods.  The attacks were of 
either the persistent or intermittent types.  Persistent attacks were continuous for a specific duration, while 
intermittent attacks last awhile, stop for a period, and then repeat the cycle. 
 
We set up a VLL between an ingress and an egress router, carrying video traffic. In one test the VLL 
received EF service, and AF in another test.  We generated "background" traffic using standard traffic 
generators.  We intentionally congested the routers to induce some "normal" variation in end-to-end 
delays.  We implemented the following attacks on the VLL traffic: 

• increase end-to-end delay and delay jitter 
• increase packet dropping (from .5% to 5%) 
• remark to a lower QoS level 10% of the traffic 

All attacks in the testbed were of the persistent type, and were successfully detected, with detection times 
ranging from 50 to 800 seconds. 
 
In the simulation experiments, the background traffic generated was self-similar, to represent a more 
challenging test case.  Both persistent and intermittent attacks were mounted.  All attacks were detected, 
with detection times ranging from 80 to 900 seconds. 
 
Our anomaly detection methods have non-zero false positive rates arising from the thresholds used for 
alarm detection, and the variability in normal (non-attack) traffic.  The χ2  tail probability α and the 3 σ 
limits were chosen in our work to produce a 1% chance of a false positive for a monitored flow that is 
Normally distributed. 
 
The software developed as part of this project is available on our website for download and testing.  This 
software implements the 3 detection methods, the sensors, and the probe packet generation.  It is 
designed to run on the Linux operating system.  
 
Vinay Mahadik graduated with a MS in Computer Engineering in August 2002.  The title of his thesis was 
Detection of Denial of QoS Attacks on DiffServ Networks.  He is currently employed at Qualys, Inc. 
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Conclusions, Recommendations 
Our intrusion detection system detects QoS degradation quickly and in real time. All the identified attacks 
were detected. The possibility of generating a false alarm is low and can be tolerated in most 
deployments.  The sensors and the detection engine are all light weight threads that can monitor several 
VLLs at a time.  Our work is the first reported on intrusion detection for QoS attacks.  We advocate the 
use of methods such as this as QoS mechanisms are deployed on a widespread scale. 
 
We believe these results make our work a strong candidate for deployment, and that the vulnerability of 
DiffServ to attack justifies attention to the issue. This is the first work on intrusion detection for security of 
QoS.   
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Chapter 6 
Statistical Anomaly Detection for TCP Packet Dropping Attacks 
 

Summary 
TCP is used as the major transport service in the Internet.  Congestion in the Internet requires users and 
routers to cooperate responsibly to solve the problem.  Because there is no central, verifiable 
enforcement of this responsibility, malicious users and routers can negatively impact the TCP throughput 
of other users, in an unnecessary and undesirable way.  The challenge in detecting such attacks is that 
*some* packet dropping is normal, and necessary in dealing with congestion. 
 
In this part of the project, we implemented a method of detecting TCP packet dropping attacks using 
statistical analysis of the packets dropped, as measured by the host.  The method is scalable and fairly 
lightweight.  We implemented a variety of packet dropping attacks and tested our method under realistic 
conditions.  The results indicate our method is effective at detecting significant levels of malicious packet 
dropping, with fairly low false positive rates. 

Introduction 
TCP provides a reliable transport service on top of IP networks, and is the dominant transport service in 
the Internet.  When congestion occurs, routers inevitably must drop, or discard packets due to insufficient 
buffer space.  TCP also copes with congestion in the Internet by requiring end systems or hosts sharing a 
bottleneck link to throttle back their sending rates to equal, sustainable levels.   
 
The assumptions by users are that routers treat all users fairly (equally) during times of congestion, and 
that all users scale back their traffic rates equally during times of congestion.  Either of these assumptions 
may be violated, either by malicious routers, or by malicious users.  The result is an undesirably, and 
unnecessarily, high level of packet discarding for non-malicious users.  Routers, in particular, which have 
complete and unrestricted control of packet forwarding and dropping, can easily implement attacks 
against user’s traffic.  Detecting attacks against the throughput of TCP flows has not been addressed by 
previous work on intrusion detection.  In this part of the ARQoS project, we investigated and implemented 
a method of detecting such attacks.  Criteria for evaluating such a method include: 

• The method should be scalable.  With increasing link speeds, routers switch traffic from an ever-
increasing number of flows.  A method which uses the hosts attached to the Internet as data 
collection and analysis points will scale better than a method which requires traffic monitoring and 
analysis by routers. 

• It should be effective at detecting artificial (non-congestion-related) packet dropping, and be 
unaffected by the normal congestion-related packet dropping that occurs in the Internet. 

• The method should have modest computational requirements. 
 
We have worked on a method for detecting packet-dropping attacks using the techniques of statistical 
anomaly detection.  We describe the method below, followed by our experimental results. 
 

Methods, Assumptions, Procedures 
We began by investigating how effective TCP packet dropping attacks of various types might be.  For 
experimental purposes we transferred the same file from four different sites, two in Asia, one in Europe, 
and one in the U.S.  Packet dropping was implemented by a machine acting as a router in our lab.  All 
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other aspects of transmission through the Internet were unaffected.  The packet dropping attacks were of 
the following types: 

• Periodic – every nth packet was dropped. 
• Retransmissions – a specified number of times a particular packet and all retransmissions of 

that packet are dropped. 
• Random – the packets dropped are uniformly randomly selected. 

The Retransmission attack was the most disruptive to TCP throughput and delay, for the same number of 
packets being dropped.  The throughput of the TCP session could be decreased several-fold with just a 
few packets picked for retransmission attacks. 
 
Our method of intrusion detection was based on SRI’s NIDES/STAT algorithm.  This algorithm 
continuously monitors a system’s behavior, and generates an alert or alarm when the system’s current 
(short-term) behavior deviates significantly from its expected behavior.  The expected behavior is based 
on construction of a long-term *profile* collected over a period of time when the system is not under 
attack.  The profile captures some of the normal variability in the behavior of the system. 
 
The number of TCP packets dropped over a long time period is measured during the training phase, and 
the PDF of these packet counts is constructed.  Then for each successive short-term time interval, a 
measure of how closely the short-term PDF agrees with the long-term PDF is calculated.  Under certain 
assumptions, the variance between these two should have an approximate χ2 distribution with n-1 
degrees of freedom.  In NIDES/STAT, the long-term profile training consists of three phases: category 
training (learning the subject’s expected behavior), Q training (learning the empirical distribution of the 
variance between the long-term and short-term behaviors) and threshold training (establishing an 
appropriate threshold for detecting anomalous behavior). 
 
We implemented a method of detecting packet dropping attacks which was based on the statistical 
analysis methods of SRI’s NIDES/STAT.  We call our method TDSAM, for TCP dropping statistical 
analysis module.  In our method, three metrics ⎯ total ftp connection delay, the position of packet 
reorderings, and the number of packet reorderings per connection ⎯ were used as input to the statistical 
analysis model for intrusion detection. We hypothesized that the connection delay, the position and 
number of packet reordering would all deviate significantly from their corresponding normal patterns 
under a dropping attack.  The long-term profile was constructed by establishing 20,000 consecutive TCP 
connections to each of the 4 sites.  The short-term profiles were collected from 5,000 consecutive FTP 
connections.  The Q values were distinctive for each site; the figure below shows the Q distribution for the 
European and the US sites, for instance. 
 
After establishing the long term profile and measuring the Q distribution, we subjected the ftp connections 
to attack using our attack agent.  An important value called the red threshold was defined for the Q 
distribution, which is the frequency a given short-term measurement occurred during the training phase.  
For the experiments, we set this threshold to 1%.    
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Figure 8. Q Distribution of packet dropping rates for two FTP sites. 

 

Results and Discussion 
The results of our experiments showed that TDSAM has a high detection rate for most Periodic dropping 
attacks. This is because normal packet reordering nearly uniformly distributes across a connection, but 
periodic dropping attacks generate a very different packet reordering distribution.  The Random packet 
dropping attack is not as easy to detect, however, as it more nearly matches normal (congestion-based) 
packet dropping.  Retransmission dropping attacks are the easiest to detect.  The results show that 
attacks causing the most harm to TCP connections are those which are easiest to detect with our 
method, which is the desired-for result. For all 3 types of attacks, if all 3 metrics (delay, position of 
reorderings, count of reorderings) were combined, the false positive (false alarm) rate was generally 
under 1%. 
 
We conclude by noting that we are measuring performance only at the receiver side; no cooperation is 
required by the sender, or from the network.  For this reason, we believe our method is quite general.  
Our results demonstrate that detection of dropping attacks by host systems attached to the network can 
be very successful. 
 
The outputs from this part of the ARQoS project include: 

• A paper entitled “Effect of Malicious Packet Dropping on TCP Performance, and Detection of 
Such Attacks”,  presented at and published in the Proceedings of the International Conf. on 
Network Protocols (ICNP) in November 2000. The paper was authored by Xiao-Bing Zhang, S. 
Felix Wu, Zhi Fu, and Tsung-Li Wu. 

• We presented this work at the DARPA Information Survivability Conference and Expo (DISCEX 
II) in 2001 in Anaheim, CA.  The paper was published as: E. Fulp, Z. Fu, D. Reeves, and F. Wu, 
“Preventing Denial of Service Attacks on Quality of Service”, Proc. of DARPA Information 
Survivability Conference and Exposition (DISCEX II), June 2001.  

• The software developed in this project has been packaged and released.  It is written in C for the 
FreeBSD or Linux platforms.  Both source code and executables are provided.  The code 
includes packet recording software, packet dropping (attack) software, and the intrusion detection 
software, including the long-term profile training component. 
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Xiaobing Zhang defended his MS in Computer Science thesis on TCP Packet Dropping Attacks and 
Intrusion Detection in May 2000.  He is currently employed by Ericsson in Raleigh, NC as a staff 
engineer. 
 

Conclusions and Recommendations 
The security and intelligence communities expect that an increasing number of attacks will be on the 
network infrastructure, and that we must prepare for such attacks.  If, in fact, attackers can gain control of 
routers, then one of the ways they could disrupt or degrade network operation is to drop TCP packets.  It 
is likely that they will do so in such a way that the mechanism or source of the attacks is non-obvious, but 
the effects of the attack will be severe.  We have shown that TCP packet dropping attacks are easy to 
mount, and that with small manipulations of the packet stream, user throughput can be severely 
degraded.  We have also shown that detection of such attacks is possible by means of statistical anomaly 
detection methods. 
 
We recommend that hosts be recruited to monitor the network performance and alert network 
administrators when the network performs in ways outside the normal, expected bounds.  By this means 
a variety of attacks, including packet dropping attacks, may be detected and isolated in the minimum 
amount of time. 
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Chapter 7 
Automatic Generation Of IPSec/VPN Security Policies In An Intra-domain 
Environment  
 

Summary 
Security of communication in the Internet is being largely handled by IPSec [RFC2401].  IPSec may be 
used to set up secure tunnels between two endpoints in the network.  These tunnels provide encryption of 
traffic, authentication of traffic, or both.  Configuring tunnels in a large enterprise to meet the needs of the 
organizations is tedious, difficult to understand, and error-prone. 
 
In this work, we allow the security administrators to specify the high-level security requirements for their 
networks.  For this purpose, we have designed a security policy specification language, which is both 
sound and complete.  From this language, we can then generate automatically, or synthesize, a set of 
IPSec tunnels and policies for use of those tunnels that will satisfy the specified high-level security 
requirements.  We demonstrate that the generated tunnels are both correct and efficient, and that the 
synthesis process runs in reasonable time for large network configurations.  The method saves user time, 
and is much less likely to have security gaps or vulnerabilities than manual configuration. 
 

Introduction 
IPSec [RFC2401] is the preferred method for ensuring secure communication in the Internet.  Because it 
is implemented at the IP layer, it provides this service to all applications that require the traffic to be 
encrypted or that require assurances of message integrity.  Before IPSec is used, a set of Security 
Associations (SAs) must be established between points (hosts, security gateways) in the network.  Each 
SA specifies the type of security to be implemented, the algorithm to use, and to what traffic the security 
should be applied.  (In the following, we refer to a SA also as a security tunnel between two endpoints, or 
alternatively, as a security policy, following common usage in the security community.) 
 
It is not difficult, given current administration tools, for the user to manually specify the set of SAs that he 
or she wants and have them implemented correctly.  What is difficult, however, is to ensure that the set of 
SAs correctly implements a high-level security requirement that the user’s organization wishes to enforce. 
 
At first glance, it might seem that a security requirement would map directly and easily to an IPSec SA or 
tunnel.  The following example, however, illustrates the difference between them. In the figure below, two 
hosts are connected securely in two different ways (by one tunnel in figure A, and by two tunnels in figure 
B).  Suppose an additional security requirement for this network is that traffic from host 1 to host 2 must 
be visible to (unencrypted at) the firewall, so that it can be examined for viruses and other undesired 
content.  In this case, only the configuration in figure B satisfies both requirements.  A user who is 
unaware of this additional requirement will not know that the SA he or she sets up is inconsistent with this 
additional requirement, and prevents it from being satisfied.  Also, a user who does not know the network 
topology (existence of the firewall on the path from host 1 to host 2) will not know how to decompose the 
tunnel in figure A into the two tunnels of figure B.  There are many more complex examples that could 
also be used to illustrate how users setting up tunnels individually may inadvertently violate each other’s 
security requirements, and how knowledge of the network topology is necessary to resolve such 
violations. 
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Figure 9. Example illustrating problems in IPSec tunnel configuration. 

 
Detecting and resolving conflicts, and configuring SAs to meet a set of security requirements, is difficult, 
tedious, and error-prone when done manually.  In our work for this project, we have tackled multiple 
aspects of this problem: 

• How can users specify their security needs in a language that is complete, but simple to use? 
• How can conflicting security requirements (i.e., that cannot simultaneously be satisfied by any 

configuration) be detected and resolved? 
• How can a specific set of SAs or tunnels be proved to either satisfy or fulfill a high-level security 

specification, or to violate it? 
• Given a high-level security specification, how can a minimal set of tunnels or SAs be 

automatically configured or generated, such that the security specification will be satisfied by that 
configuration? 

The methods we propose, and their benefits, are described below. 
 

Methods, Assumptions, Procedures 
The starting point of this project was to create a method for users to specify what their high-level security 
requirements are.  We designed a language that we believe captures the most important security 
requirements in a compact, but understandable, way.  Traffic flows are specified by means of patterns, or 
filters, that identify protocol types, ports, etc., and network elements (hosts, routers, firewalls, gateways) 
are specified by specific addresses or ranges of addresses.  This language has statements that fall in one 
of 4 categories: 

• Access Control Requirement (ACR): Traffic of the specified type from a network element  A to a 
network element B should be allowed, or should be denied. 

• Secure Content Requirement (SCR): Traffic of the specified type from A to B should be protected 
in a specific way (encrypted and/or authenticated, in tunnel or transport mode, with a specified 
cryptographic method). 

• Content Access Requirement (CAR): Traffic of the specified type from A to B should be 
“readable” by (not encrypted at) network element C. 
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• Security Association Restriction (SAR): A security association or tunnel of the specified type may 
*not* be set up between points A and B. 

This language we believe allows the expression of the most common security requirements in a natural 
way. 
 
Given a security requirement, we need to determine if a specific security configuration (set of SAs) fulfills 
or satisfies that requirement.  We formally defined necessary and sufficient conditions for satisfying each 
of the above types of requirements.  We then developed an algorithm for determining whether a set of 
requirements is satisfied by a security configuration.  This algorithm is based on path traversal in the 
network for each security requirement, examining the security policies or tunnels at each network element 
on the path between the two specified endpoints.  By doing this for every path traversed by the specified 
traffic, it is possible to verify that the security requirement is satisfied along every such path. 
 
When a configuration of security tunnels does *not* satisfy the high-level security requirements, it is 
desirable to modify the configuration to minimize the security violations or risk.  Each violation of a 
security requirement is assigned a penalty, reflecting the severity of that violation.  The task of security 
policy reconfiguration is to modify the existing tunnels to minimize the sum of the penalties (i.e., reduce to 
0 if possible).  Eliminating violations requires decomposing tunnels into shorter tunnels, subject to the 
security association restrictions.  The process of finding a decomposition which minimizes the penalty we 
solve by brute force; enumeration of all decompositions, with pruning performed by a branch-and-bound 
algorithm to speed up the solution. 
 
The final part of this part of the project addresses the issue of automatically generating, or synthesizing, a 
security configuration (set of SAs) that meets a specified security requirement or requirements.  We 
investigated two approaches to accomplish this.  The first approach, bundling, starts with a graph-based 
representation of the security requirements.  From these requirements, the traffic flows are grouped into 
disjoint “bundles” sharing the same security requirements and sharing a common sub-path through the 
network.  Then for each bundle, a filter specifying this group of flows is constructed, and the security 
tunnels or tunnels for this bundle is generated.  The second approach, the direct approach, starts by 
synthesizing a tunnel for each SCR.  Where tunnels overlap (share portions of the same path through the 
network), they are decomposed into a larger set of non-overlapping tunnels that fulfills all requirements. 
 
We have done experiments with these two approaches on a large set of security requirements.  While 
both approaches correctly find a solution, the direct approach is faster to compute, and results in a 
smaller number of SAs than the bundling approach, and is thus preferable. 
 

Results and Discussion 
Our work has shown how to easily specify a security requirement, how to verify that a set of IPSec 
security associations satisfies the requirement, and how to automatically generate a set of SAs from 
scratch, given a security requirement.  We believe our methods will help eliminate the mistakes that occur 
during manual security tunnel configuration, due to complexity, lack of understanding of the interaction 
between multiple, independent security requirements, and lack of knowledge of the network topology. 
 
The results from our research on this problem include the following: 

• A paper and presentation by Zhi Fu, S. Felix Wu, et al. entitled “IPSec/VPN Security Policy: 
Correctness, Conflict Detection and Resolution”, published in the Proceedings of the Policy 
Workshop 2001,  Bristol, England, January 2001. 
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• A paper by Zhi Fu and S. Felix Wu entitled “Automatic Generation of IPSec/VPN Security Policies 
In an Intra-Domain Environment”, was presented at and published in the Proc. Of the12th 
International Workshop on Distributed Systems: Operations & Management (DSOM 2001), Nancy 
France, Oct. 2001.  This paper won a Best Paper Award at the conference. 

• Software implementing the bundle and direct approaches for synthesizing IPSec security 
associations from a set of security requirements has been put on the website.  The software is 
written in C for the Linux operating system.  Source code is provided as well as the executable. 

 
Zhi Fu’s PhD thesis investigated in detail the problem and methods described in this chapter.  The title 
was Network Management And Intrusion Detection For Quality of Network Services.  She successfully 
defended her PhD thesis in Computer Science from NC State University in June of 2001, and is now 
employed as a staff researcher at Motorola Research Labs in Chicago, Illinois. 

Conclusions and Recommendations 
We believe our work will result in fewer mistakes in IPSec configuration, and make the task of generating 
an efficient set of security tunnels much easier.  The net result is a higher degree of confidence in the 
correct implementation of a strong security posture.  We are pursuing open problems in security policy 
specification and automatic configuration, and the possibility of standardizing the security requirements 
language we have defined.  We hope to see products from network product vendors incorporating some 
of the capabilities described in this chapter. 
 

References 
[RFC2401] S. Kent and R. Atkinson, “Security Architecture for the Internet Protocol”, IETF RFC 2401, 
Nov. 1998. 



 

 

 

31

Chapter 8 
Tracing Attack Traffic Through Stepping Stones Using Watermarking 
 

Summary 
Attackers who use the Internet to launch attacks often stage attacks through a series of unsuspecting 
(non-malicious) host computers, called stepping stones. They do this in order to make tracing the origin of 
the attacks difficult.  Conventional IP Traceback attacks will only identify the last stepping stone in the 
sequence, but not the true origin of the attacks, or the other stepping stones. 
 
We have developed a method of tracing attack traffic through stepping stones by correlating incoming 
traffic with outgoing traffic.  We use both the packet payload and the packet timing characteristics for 
purposes of correlation.  We have proposed an architecture for implementing our method, and 
demonstrated the method is highly resistant against common countermeasures the attacker may use to 
thwart tracing and correlation. 
 

Introduction 
Most attacks on computer systems, and theft of computer data, occurs via the Internet.  The perpetrators 
of these attacks are anxious to hide their identity, so that they can (a) continue the attack and (b) be safe 
from prosecution or retaliation.  There are many techniques for hiding the source and path of the attack, 
including the following: 

1. Encrypting the traffic so the payload can’t be recognized or analyzed 
2. Mixing the attack traffic with other traffic to make it difficult to trace 
3. Making the attack traffic look as innocuous and unremarkable as possible to avoid detection 
4. Spoofing the source IP address (i.e., replacing the IP address of the true source of the attack 

traffic with the IP address of some other host) 
5. Recruiting or infecting other hosts (i.e., implanting attack software on “zombies”) to launch attacks 

on command from the attacker 
6. Launching an attack through a series of unsuspecting / unwitting hosts (“stepping stones”) 
7. “laundering” the attack path by routing traffic through anonymizers (anonymizing proxies) or 

through networks with non-cooperative owners (i.e., belonging to nations not bound by treaty 
obligations) or by tunneling traffic between gateways 

 
Much attention has been given recently to methods for IP traceback, whose goal is to identify the path 
that traffic takes through the Internet [SWKA2000].  Traceback is specifically intended to deal with 
concealment technique #4 (source address spoofing).  Most of the methods assume that the routers in 
the network cooperate in the effort, and these methods specifically do not solve the problems of stepping 
stones or attack laundering (techniques #6 and #7).  Both are serious limitations. 
 
There have been several proposals for tracing traffic through stepping stones [ZP2000].  We first present 
our method and then describe its advantages over these other approaches.  We aim for a method that: 

• Is very effective (successfully traces attack traffic, and rarely identifies or follows a “false trail”) 
• Is effective despite the use of the above techniques, and is resistant to efforts by the attacker to 

defeat the specific tracing method 
• Is difficult to detect when in operation 
• Has low overhead (computation, bandwidth) 
• Allows tracing in as little time as possible, since attacks may not last very long 
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Methods, Assumptions, Procedures 
 
We have developed three methods of tracing: by (1) actively marking the payload, (2) passively 
monitoring the traffic timing characteristics, and (3) actively marking the traffic timing.  All of our methods 
make use of the following framework or architecture. 
 
We assume that at some point the attack traffic can be subtly modified to help in tracing.  If the attack is 
interactive (i.e., the attacker telnets into a host), then the traffic being sent or echoed back to the attacker 
may be modified by the victim, who presumably has some incentive to cooperate.  However, the point of 
modification may also be any routers or firewalls at any point of the network.  We also assume the 
existence of observation points in the network to look for traffic meeting certain specified criteria.  Lastly, 
we assume that communication between the modifier and the observation points is possible, to 
coordinate the process of tracing.  A diagram of this architecture is shown in the figure below. 
 

 
Method 1 is based on the principles of steganography, which is the science of concealing messages by 
embedding them in other information.  We suggested that non-printing characters could be added to the 
payload of text when the attack consisted of conventional (typed) commands and feedback to be 
displayed on the attacker’s screen.  Since the attack payload is normally preserved through stepping 
stones, and embedded character sequences could be made arbitrarily long, the method was highly 
effective.  However, it would not work if the attacker encrypted the attack traffic at any stepping stone, 
and it was relatively easy for the attacker to detect and remove. 
 
Method 2 is a passive method which simply observes and records the timing characteristics of attack 
traffic.  By “timing characteristics”, we simply mean the intervals of time between successive packets in a 
TCP connection.  We showed on a large set of traces that timing characteristics of traffic are highly 
distinctive, and that a tracing method based on timing could be extremely effective.  As few as 25 or 30 
packets were needed to uniquely identify almost every traffic source, and the timing characteristics were 
preserved even when the traffic traveled through scores of routers and many stepping stones.  A figure of 
performance is shown below.  In this figure, there should be 15 true positives, and there should be 0 false 
positives out of a total of 225 possible correlations.  The limitation of this method, unfortunately, is that it 
is relatively easy for the attacker to modify the timing characteristics so they are no longer effective for 
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tracing purposes.  That is, at any stepping stone, the individual packets could be delayed specifically for 
the purpose of distorting the traffic timing to interfere with timing analysis. 
 

 
Figure 11. True and false positive rates on a test case, using passive timing analysis. 

 
 
Method 3 is an active method, again based on the traffic timing.  The intention of method 3 is to retain the 
advantages of method 2, but make it resistant to modification of the timing characteristics by the attacker.  
Our method perturbs packet timing in a way which is relatively easy to identify with specific knowledge, 
but difficult (for the attacker) to otherwise detect, and very difficult to remove.  The embedded, or 
watermarking, of information by perturbing packet timing has 4 components: 

• A single bit (0 or 1) of identifying information can be embedded by changing the interpacket delay 
of just two packets by a specified amount 

• A single bit can be embedded more robustly by changing the *average* interpacket delay of a 
sequence of packets by a specified amount 

• Multiple bits of identifying information can be embedded to improve the uniquely identifying 
characteristics of the embedded information 

• A Hamming distance threshold allows identification of embedded information within a specified 
bound on the number of corrupted bits 

The location of interpacket delays that are perturbed can be randomly generated in a way that makes 
detection by an attacker very difficult.  The amount of perturbation of individual interpacket delays can be 
made arbitrarily small, while maintaining detectability in the presence of arbitrarily large timing 
modifications by the attacker.   
 
 

Results and Discussion 
We have run extensive experiments on large-scale traces of traffic from the Internet to validate our 
methods.  The results for method #3 (active timing modification) are shown below.  These results 
demonstrate the method is highly effective, and robust to timing modifications. 
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Figure 12. Results of watermarking flows using active timing modification. 

 
Most previous work on tracing through stepping stones either is vulnerable to modifications of the payload 
(e.g., encryption), or is sensitive to attempts by the attacker to modify the packet flow timing 
characteristics.  [D2002] suggests the usefulness of packet timing for tracing, but does not describe an 
active method for perturbing the timing to enhance traceability. 
 
Outputs of this part of the project include the following: 

• X. Wang, D. Reeves, F. Wu, and J. Yuill, “Sleepy Watermark Tracing: An Active Network-Based 
Intrusion Response Framework”, Proc. of IFIP 16th International Conference on Information 
Security, Paris, France, June 2001. 

• X. Wang, D. Reeves, and S. F. Wu, “Tracing Based Active Intrusion Response”, Journal of 
Information Warfare, Teamlink Australia Pty Ltd., Vol. 1, No. 1, September 2001, pp. 50—61. 

• X. Wang, D. Reeves, and S. F. Wu, “Inter-Packet Delay Based Correlation for Tracing Encrypted 
Connections Through Stepping Stones”, Proc. Of the 7th European Symposium on Research in 
Computer Security (ESORICS 2002), Springer-Verlag LNCS 2502.  

• X. Wang and D. S. Reeves will present their work at the ACM Conference on Computer and 
Communications Security (CCS 2003) in Washington, DC this month.  The paper will be 
published as: X. Wang and D. S. Reeves, “Robust Correlation of Encrypted Attack Traffic 
Through Stepping Stones by Manipulation of Interpacket Delays”, in the Proc. Of ACM CCS 
2003, October 2003. 

 
In addition, the work described in this section is the basis for the PhD thesis of Xinyuan Wang, who 
expects to defend his PhD thesis in December of 2003.  He is  currently employed by Cisco Networks.   
 

Conclusions and Recommendations 
Tracing of attack traffic is needed to prosecute and isolate the source of attacks.  Current methods are 
fairly easy for attackers to defeat.  We have developed a method which is potentially much more robust 
against a variety of countermeasures (#1, #3, #4, and #6 above).   We will continue to develop and 
promote this new method. 
 
The countermeasures that have not been addressed yet by us are anonymizing proxies and traffic 
padding, or “camouflaging”.  We will shortly turn our attention to these issues. 
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a.  Correlation True Positive Rates under 
Random Timing Perturbs
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